8,833 research outputs found

    MHD disc winds

    Get PDF
    This is a doctorate level lecture on the physics of accretion discs driving magnetically self-confined jets, usually referred to in the literature as disc winds. I will first review the governing magnetohydrodynamic equations and then discuss their physical content. At that level, necessary conditions to drive jets from keplerian accretion discs can already be derived. These conditions are validated with self-similar calculations of accretion-ejection structures. In a second part, I will critically discuss the biases introduced when using self-similarity as well as some other questions such as: Are these systems really unstable? Can a standard accretion disc provide the conditions to launch jets in its innermost parts? What is the difference between X-winds and disc-winds? Finally, the magnetic interaction between a protostar and its circumstellar disc will be discussed with a focus on stellar spin down.Comment: 25 pages, 11 figures to be published in Lecture Notes in Physics, "Jets from Young Stars: Models and Constraints", J. Ferreira, C. Dougados and E. Whelan (eds), Springer Verla

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfv\'en Waves

    Get PDF
    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfv\'en waves that drive winds from red giant stars. We calculated four Alfv\'en wind models that cover the whole range of Alfv\'en wave frequency spectrum to characterize the role of freely propagated and reflected Alfv\'en waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfv\'en wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfv\'en waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.Comment: accepted by Ap

    MHD Disc Winds and Linewidth Distributions

    Full text link
    We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magneto-hydrodynamic model of Emmering et al. We show how the shape, broadening and shift of the C IV line depend not only on the viewing angle to the object but also on the wind launching angle, especially for small launching angles. We have compared the dispersions in our model C IV linewidth distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. As the torus half-opening angle (measured from the polar axis) increases above about 18? degrees, increasingly larger wind launching angles are required to match the observational constraints. Above a half-opening angle of about 47? degrees, no wind launch angle (within the maximum allowed by the MHD solutions) can match the observations. Considering a model that replaces the torus by a warped disc yields the same constraints obtained with the two other models

    On fan-shaped cold MHD winds from Keplerian accretion discs

    Full text link
    We investigate under which conditions cold, fan-shaped winds can be steadily launched from thin (Keplerian) accretion discs. Such winds are magneto-centrifugal winds launched from a thin annulus in the disc, along open magnetic field lines that fan out above the disc. In principle, such winds could be found in two situations: (1) at the interface between an inner Jet Emitting Disc, which is itself powering magneto-centrifugally driven winds, and an outer standard accretion disc; (2) at the interface between an inner closed stellar magnetosphere and the outer standard accretion disc. We refer to Terminal or T-winds to the former kind and to Magnetospheric or M-winds to the latter. The full set of resistive and viscous steady state MHD equations are analyzed for the disc (the annulus), which allow us to derive general expressions valid for both configurations. We find that, under the framework of our analysis, the only source of energy able to power any kind of fan-shaped winds is the viscous transport of rotational energy coming below the inner radii. Using standard local α\alpha prescriptions for the anomalous (turbulent) transport of angular momentum and magnetic fields in the disc, we derive the strength of the transport coefficients that are needed to steadily sustain the global configuration. It turns out that, in order for these winds to be dynamically relevant and explain observed jets, the disc coefficients must be far much larger than values expected from current knowledge of turbulence occurring inside proto-stellar discs. Either the current view on MHD turbulence must be deeply reconsidered or steady-state fan-shaped winds are never realized in Nature. The latter hypothesis seems to be consistent with current numerical simulations.Comment: Among several possibilites, this paper addresses also the case of the X-wind Accepted for publication in MNRA

    Magnetic Nested-wind Scenarios for Bipolar Outflows: Pre-planetary and YSO nebular shaping

    Get PDF
    We present results of a series of magnetohydrodynamic (MHD) and hydro- dynamic (HD) 2.5D simulations of the morphology of outflows driven by nested wide-angle winds - i.e. winds which eminate from a central star as well as from an orbiting accretion disk. While our results are broadly relevent to nested wind systems we have tuned the parameters of the simulations to touch on issues in both Young Stellar Objects and Planetary Nebula studies. In particular our studies connect to open issues in the early evolution of Planetary Nebulae. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds on the other hand give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates, and to the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.Comment: 28 pages, 8 figure

    Stratified Magnetically-Driven Accretion-Disk Winds and Their Relations to Jets

    Get PDF
    We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density n(r,θ)n(r,\theta), ionization parameter ξ(r,θ)\xi(r,\theta), and velocity structure v(r,θ)v(r,\theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, FF, and specific angular momentum, HH, for which wind solutions become super-\Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller HH show a poloidal geometry of narrower opening angles with their \Alfven\ surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, rr, and distinct values of nn, ξ\xi and vv consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk-winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.Comment: version 2 (modified), 27 pages, 5 figures, accepted to Ap

    Stellar Outflows Driven by Magnetized Wide-Angle Winds

    Get PDF
    We present two-dimensional, cylindrically symmetric simulations of hydrodynamic and magnetohydrodynamic (MHD) wide-angle winds interacting with a collapsing environment. These simulations have direct relevance to young stellar objects (YSOs). The results may also be of use in the study of collimated outflows from proto-planetary and planetary nebulae. We study a range of wind configurations consistent with asymptotic MHD wind collimation. The degree of collimation is parameterized by the ratio of the wind density at the pole to that of the equator. We find that a toroidal magnetic field can have a significant influence on the resulting outflow, giving rise to a very dense, jet-like flow in the post-shock region. The properties of the flow in this region are similar to the asymptotic state of a collimated MHD wind. We conclude that wide-angle MHD winds are quite likely capable of driving molecular outflows. Due to difficulty in treating MHD winds ab-initio in simulations we choose magnetic field strengths in the wind consistent slow magnetic rotators. While MHD launched winds will be in the fast rotator regime we discuss how our results, which rely on toroidal pinch effects, will hold for stronger field strengths
    corecore